Aaron's blog

  • Home

  • About

  • Categories11

  • Archives37

  • Search

TCP and UDP

Posted on 2019-09-08 Edited on 2019-09-14 In 计算机网络 Views:

UDP

UDP(User Data Protocol,用户数据报协议)它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去。

UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。例如,在默认状态下,一次“ping”操作发送4个数据包。发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。QQ就使用UDP发消息,因此有时会出现收不到消息的情况。

我们来看一下 UDP 的包头

由上图可以看出,UDP 除了端口号,基本啥都没有了。如果没有这两个端口号,数据就不知道该发给哪个应用。
所以 UDP 特别简单,有如下三个特点

  1. 沟通简单,不需要大量的数据结构,处理逻辑和包头字段
  2. 轻信他人。它不会建立连接,但是会监听这个地方,谁都可以传给它数据,它也可以传给任何人数据,甚至可以同时传给多个人数据。
  3. 愣头青,做事不懂变通。不会根据网络的情况进行拥塞控制,无论是否丢包,它该怎么发还是怎么发

因为 UDP 是”小孩子”,所以处理的是一些没那么难的项目,并且就算失败的也能接收。基于这些特点的话,UDP 可以使用在如下场景中

  1. 需要资源少,网络情况稳定的内网,或者对于丢包不敏感的应用,比如 DHCP 就是基于 UDP 协议的。
  2. 不需要一对一沟通,建立连接,而是可以广播的应用。因为它不面向连接,所以可以做到一对多,承担广播或者多播的协议。
  3. 需要处理速度快,可以容忍丢包,但是即使网络拥塞,也毫不退缩,一往无前的时候

UDP 的几个例子

  1. 直播。直播对实时性的要求比较高,宁可丢包,也不要卡顿的,所以很多直播应用都基于 UDP 实现了自己的视频传输协议
  2. 实时游戏。游戏的特点也是实时性比较高,在这种情况下,采用自定义的可靠的 UDP 协议,自定义重传策略,能够把产生的延迟降到最低,减少网络问题对游戏造成的影响
  3. 物联网。一方面,物联网领域中断资源少,很可能只是个很小的嵌入式系统,而维护 TCP 协议的代价太大了;另一方面,物联网对实时性的要求也特别高。比如 Google 旗下的 Nest 简历 Thread Group,推出了物联网通信协议 Thread,就是基于 UDP 协议的

UDP的优点

快,比TCP稍安全
UDP没有TCP的握手、确认、窗口、重传、拥塞控制等机制,udp是一个无状态的传输协议,所以他在传输数据时非常快。M没有TCP的这些机制,UDP较TCP被攻击者利用的漏洞就要少一些。UDP也是无法避免攻击的,比如:UDP flood攻击。。。

UDP的缺点

不可靠,不稳定
因为UDP没有TCP的那些可靠机制,在网络质量不好时很容易丢包。

TCP

TCP(Transmission Control Protocol,传输控制协议)
首先是 TCP 的包头格式

  1. 首先,源端口和目标端口是不可少的。
  2. 接下来是包的序号。主要是为了解决乱序问题。不编好号怎么知道哪个先来,哪个后到
  3. 确认序号。发出去的包应该有确认,这样能知道对方是否收到,如果没收到就应该重新发送,这个解决的是不丢包的问题
  4. 状态位。SYN 是发起一个链接,ACK 是回复,RST 是重新连接,FIN 是结束连接。因为 TCP 是面向连接的,因此需要双方维护连接的状态,这些状态位的包会引起双方的状态变更
    窗口大小,TCP 要做流量控制,需要通信双方各声明一个窗口,标识自己当前的处理能力。

通过对 TCP 头的解析,我们知道要掌握 TCP 协议,应该重点关注以下问题:

  • 顺序问题
  • 丢包问题
  • 连接维护
  • 流量控制
  • 拥塞控制

TCP 的三次握手

所有的问题,首先都要建立连接,所以首先是连接维护的问题

TCP 的建立连接称为三次握手,可以简单理解为下面这种情况

A:您好,我是 A
B:您好 A,我是 B
A:您好 B

对于 A 来说它发出请求,并收到了 B 的响应,对于 B 来说它响应了 A 的请求,并且也接收到了响应。

TCP 的三次握手除了建立连接外,主要还是为了沟通 TCP 包的序号问题。

A 告诉 B,我发起的包的序号是从哪个号开始的,B 同样也告诉 A,B 发起的 包的序号是从哪个号开始的。
双方建立连接之后需要共同维护一个状态机,在建立连接的过程中,双方的状态变化时序图如下所示

这是网上经常见到的一张图,刚开始的时候,客户端和服务器都处于 CLOSED 状态,先是服务端主动监听某个端口,处于 LISTEN 状态。然后客户端主动发起连接 SYN,之后处于 SYN-SENT 状态。服务端接收了发起的连接,返回 SYN,并且 ACK ( 确认 ) 客户端的 SYN,之后处于 SYN-SENT 状态。客户端接收到服务端发送的 SYN 和 ACK 之后,发送 ACK 的 ACK,之后就处于 ESTAVLISHED 状态,因为它一发一收成功了。服务端收到 ACK 的 ACK 之后,也处于 ESTABLISHED 状态,因为它也一发一收了。

TCP 四次挥手

说完建立连接,再说下断开连接,也被称为四次挥手,可以简单理解如下

A:B 啊,我不想玩了
B:哦,你不想玩了啊,我知道了
这个时候,只是 A 不想玩了,即不再发送数据,但是 B 可能还有未发送完的数据,所以需要等待 B 也主动关闭。
B:A 啊,好吧,我也不玩了,拜拜
A:好的,拜拜

这样整个连接就关闭了,当然上面只是正常的状态,也有些非正常的状态(比如 A 说完不玩了,直接跑路,B 发起的结束得不到 A 的回答,不知道该怎么办或则 B 直接跑路 A 不知道该怎么办),TCP 协议专门设计了几个状态来处理这些非正常状态

断开的时候,当 A 说不玩了,就进入 FIN_WAIT_1 的状态,B 收到 A 不玩了的消息后,进入 CLOSE_WAIT 的状态。

A 收到 B 说知道了,就进入 FIN_WAIT_2 的状态,如果 B 直接跑路,则 A 永远处与这个状态。TCP 协议里面并没有对这个状态的处理,但 Linux 有,可以调整 tcp_fin_timeout 这个参数,设置一个超时时间。

如果 B 没有跑路,A 接收到 B 的不玩了请求之后,从 FIN_WAIT_2 状态结束,按说 A 可以跑路了,但是如果 B 没有接收到 A 跑路的 ACK 呢,就再也接收不到了,所以这时候 A 需要等待一段时间,因为如果 B 没接收到 A 的 ACK 的话会重新发送给 A,所以 A 的等待时间需要足够长。

累计确认

TCP 如何实现可靠传输?
首先为了保证顺序性,每个包都有一个 ID。在建立连接的时候会商定起始 ID 是什么,然后按照 ID 一个个发送,为了保证不丢包,需要对发送的包都要进行应答,当然,这个应答不是一个一个来的,而是会应答某个之前的 ID,表示都收到了,这种模式成为累计应答或累计确认。

为了记录所有发送的包和接收的包,TCP 需要发送端和接收端分别来缓存这些记录,发送端的缓存里是按照包的 ID 一个个排列,根据处理的情况分成四个部分

  • 发送并且确认的
  • 发送尚未确认的
  • 没有发送等待发送的
  • 没有发送并且暂时不会发送的

这里的第三部分和第四部分就属于流量控制的内容

在 TCP 里,接收端会给发送端报一个窗口大小,叫 Advertised window。这个窗口应该等于上面的第二部分加上第三部分,超过这个窗口,接收端做不过来,就不能发送了

于是,发送端要保持下面的数据结构

对于接收端来讲,它的缓存里面的内容要简单一些

  • 接收并且确认过的
  • 还没接收,但是马上就能接收的
  • 还没接收,但也无法接收的
    对应的数据结构如下

顺序问题和丢包问题

结合上面的图看,在发送端,1、2、3 已发送并确认;4、5、6、7、8、9 都是发送了还没确认;10、11、12 是还没发出的;13、14、15 是接收方没有空间,不准备发的。

在接收端来看,1、2、3、4、5 是已经完成 ACK 但是还没读取的;6、7 是等待接收的;8、9 是已经接收还没有 ACK 的。
发送端和接收端当前的状态如下:

  • 1、2、3 没有问题,双方达成了一致
  • 4、5 接收方说 ACK 了,但是发送方还没收到
  • 6、7、8、9 肯定都发了,但是 8、9 已经到了,6、7 没到,出现了乱序,缓存着但是没办法 ACK。
    根据这个例子可以知道顺序问题和丢包问题都有可能存在,所以我们先来看确认与重传机制。

假设 4 的确认收到了,5 的 ACK 丢了,6、7 的数据包丢了,该怎么办?

一种方法是超时重试,即对每一个发送了但是没有 ACK 的包设定一个定时器,超过了一定的事件就重新尝试。这个时间必须大于往返时间,但也不宜过长,否则超时时间变长,访问就变慢了。

如果过一段时间,5、6、7 都超时了就会重新发送。接收方发现 5 原来接收过,于是丢弃 5;6 收到了,发送 ACK,要求下一个是 7,7 不幸又丢了。当 7 再次超时的时候,TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会讲下一次超时时间间隔设为先前值的两倍。

超时重传的机制是超时周期可能相对较长,是否有更快的方式呢?

有一个快速重传的机制,即当接收方接收到一个序号大于期望的报文段时,就检测到了数据流之间的间隔,于是发送三个冗余的 ACK,客户端接收到之后,知道数据报丢失,于是重传丢失的报文段。

例如,接收方发现 6、8、9 都接收了,但是 7 没来,所以肯定丢了,于是发送三个 6 的 ACK,要求下一个是 7。客户端接收到 3 个,就会发现 7 的确又丢了,不等超时,马上重发。

流量控制的问题

在流量控制的机制里面,在对于包的确认中,会携带一个窗口的大小

简单的说一下就是接收端在发送 ACK 的时候会带上缓冲区的窗口大小,但是一般在窗口达到一定大小才会更新窗口,因为每次都更新的话,刚空下来就又被填满了

拥塞控制的问题

也是通过窗口的大小来控制的,但是检测网络满不满是个挺难的事情,所以 TCP 发送包经常被比喻成往水管里灌水,所以拥塞控制就是在不堵塞,不丢包的情况下尽可能的发挥带宽。

水管有粗细,网络有带宽,即每秒钟能发送多少数据;水管有长度,端到端有时延。理想状态下,水管里面的水 = 水管粗细 * 水管长度。对于网络上,通道的容量 = 带宽 * 往返时延。

如果我们设置发送窗口,使得发送但未确认的包为通道的容量,就能撑满整个管道。

如图所示,假设往返时间为 8 秒,去 4 秒,回 4 秒,每秒发送一个包,已经过去了 8 秒,则 8 个包都发出去了,其中前四个已经到达接收端,但是 ACK 还没返回,不能算发送成功,5-8 后四个包还在路上,还没被接收,这个时候,管道正好撑满,在发送端,已发送未确认的 8 个包,正好等于带宽,也即每秒发送一个包,也即每秒发送一个包,乘以来回时间 8 秒。

如果在这个基础上调大窗口,使得单位时间可以发送更多的包,那么会出现接收端处理不过来,多出来的包会被丢弃,这个时候,我们可以增加一个缓存,但是缓存里面的包 4 秒内肯定达不到接收端课,它的缺点会增加时延,如果时延达到一定程度就会超时重传

TCP 拥塞控制主要来避免两种现象,包丢失和超时重传,一旦出现了这些现象说明发送的太快了,要慢一点。

具体的方法就是发送端慢启动,比如倒水,刚开始倒的很慢,渐渐变快。然后设置一个阈值,当超过这个值的时候就要慢下来

慢下来还是在增长,这时候就可能水满则溢,出现拥塞,需要降低倒水的速度,等水慢慢渗下去。

拥塞的一种表现是丢包,需要超时重传,这个时候,采用快速重传算法,将当前速度变为一半。所以速度还是在比较高的值,也没有一夜回到解放前。

Tcp的优点

可靠,稳定
TCP的可靠性体现在传输数据之前,三次握手建立连接(四次挥手释放连接),并且在数据传递时,有确认、窗口、重传、拥塞控制机制,数据传完之后,断开连接用来节省系统资源。

TCP的缺点

慢,效率低,占用系统资源高,易被攻击
传数据之前建立连接,这样会消耗时间,而且在消息传递时,确认机制、重传机制和拥塞控制机制都会消耗大量的时间,而且要在每台设备上维护所有的传输连接。而每个连接都会占用系统的CPU、内存等硬件软件资源。并且TCP的取而机制、三次握手,这些也导致TCP容易被人利用,实现DOS,DDOS攻击。

TCP 和 UDP 的区别

UDP 是一种面向无连接,且不可靠的协议,在通信过程中,它并不像 TCP 那样需要先建立一个连接,只要(目的地址,端口号,源地址,端口号)确定了,就可以直接发送信息报文,并且不需要确保服务端一定能收到或收到完整的数据。它仅仅提供了校验和机制来保障一个报文是否完整,若校验失败,则直接丢弃报文,不做任何处理。

TCP和UDP都是传输层协议,但是两者具有不同的特性和应用场景

  1. TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接。
  2. UDP程序结构较简单
  3. TCP 是面向字节流的,UDP 是基于数据报的
  4. TCP 保证数据正确性,UDP 可能丢包
  5. TCP 保证数据顺序,UDP 不保证
  6. TCP要求系统资源较多,UDP较少。
  7. TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付。
  8. TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的,UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)。
  9. 每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信。
  10. TCP首部开销20字节;UDP的首部开销小,只有8个字节。
  11. TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道。

名词解释
面向报文和面向字节流
面向报文的传输方式是应用层交给UDP多长的报文,UDP就发送多长的报文,即一次发送一个报文。因此应用程序必须选择大小合适的报文。报文太长,则IP层需要分片,降低效率。

面向字节流的传输方式是应用程序和TCP的交互是一次一个数据块(大小不等),TCP把这些数据块看成是一连串无结构的字节流。TCP有一个缓冲,当应用程序传送的数据块太长,TCP就会把它分割成多块传送。
双工性
全双工:是指在发送数据的同时也能够接收数据,两者同步进行,这好像我们平时打电话一样,说话的同时也能够听到对方的声音。目前的网卡一般都支持全双工。

半双工:所谓半双工就是指一个时间段内只有一个动作发生,举个简单例子,一条窄窄的马路,同时只能有一辆车通过,当目前有两量车对开,这种情况下就只能一辆先过,等到头儿后另一辆再开,这个例子就形象的说明了半双工的原理。

TCP/UDP编程模型

从程序实现的角度来看,可以用下图来进行描述。

从上图也能清晰的看出,TCP通信需要服务器端侦听listen、接收客户端连接请求accept,等待客户端connect建立连接后才能进行数据包的收发(recv/send)工作。而UDP则服务器和客户端的概念不明显,服务器端即接收端需要绑定端口,等待客户端的数据的到来。后续便可以进行数据的收发(recvfrom/sendto)工作。

前面提到了UDP保留了报文的边界,下面我们来谈谈TCP和UDP中报文的边界问题。在默认的阻塞模式下,TCP无边界,UDP有边界。

对于TCP协议,客户端连续发送数据,只要服务端的这个函数的缓冲区足够大,会一次性接收过来,即客户端是分好几次发过来,是有边界的,而服务端却一次性接收过来,所以证明是无边界的;

而对于UDP协议,客户端连续发送数据,即使服务端的这个函数的缓冲区足够大,也只会一次一次的接收,发送多少次接收多少次,即客户端分几次发送过来,服务端就必须按几次接收,从而证明,这种UDP的通讯模式是有边界的。

TCP 与 UDP 的应用场景



从特点上我们已经知道,TCP 是可靠的但传输速度慢 ,UDP 是不可靠的但传输速度快。因此在选用具体协议通信时,应该根据通信数据的要求而决定。

若通信数据完整性需让位与通信实时性,则应该选用 TCP 协议(如文件传输、重要状态的更新等);反之,则使用 UDP 协议(如视频传输、实时通信等)。

什么时候应该使用TCP

当对网络通讯质量有要求的时候,比如:整个数据要准确无误的传递给对方,这往往用于一些要求可靠的应用,比如HTTP、HTTPS、FTP等传输文件的协议,POP、SMTP等邮件传输的协议。

在日常生活中,常见使用TCP协议的应用如下:

  • 浏览器,用的HTTP
  • FlashFXP,用的FTP
  • Outlook,用的POP、SMTP
  • Putty,用的Telnet、SSH
  • QQ文件传输

什么时候应该使用UDP

当对网络通讯质量要求不高的时候,要求网络通讯速度能尽量的快,这时就可以使用UDP。
比如,日常生活中,常见使用UDP协议的应用如下:

  • QQ语音
  • QQ视频
  • TFTP

总结

什么是面向连接,什么是面向无连接

在互通之前,面向连接的协议会先建立连接,如 TCP 有三次握手,而 UDP 不会

TCP 为什么是可靠连接

  • 通过 TCP 连接传输的数据无差错,不丢失,不重复,且按顺序到达。
  • TCP 报文头里面的序号能使 TCP 的数据按序到达
  • 报文头里面的确认序号能保证不丢包,累计确认及超时重传机制
  • TCP 拥有流量控制及拥塞控制的机制
    TCP 的顺序问题,丢包问题,流量控制都是通过滑动窗口来解决的
    拥塞控制时通过拥塞窗口来解决的

两种协议都是传输层协议,为应用层提供信息载体。TCP协议是基于连接的可靠协议,有流量控制和差错控制,也正因为有可靠性的保证和控制手段,所以传输效率比UDP低;UDP协议是基于无连接的不可靠协议,没有控制手段,仅仅是将数据发送给对方,因此效率比TCP要高。

基于上述特性,不难得到结论,TCP协议适用于对效率要求相对低,但对准确性要求相对高的场景下,或者是有一种连接概念的场景下;而UDP协议适用于对效率要求相对高,对准确性要求相对低的场景。

几个应用的例子。TCP一般用于文件传输(FTP HTTP 对数据准确性要求高,速度可以相对慢),发送或接收邮件(POP IMAP SMTP 对数据准确性要求高,非紧急应用),远程登录(TELNET SSH 对数据准确性有一定要求,有连接的概念)等等;UDP一般用于即时通信(QQ聊天 对数据准确性和丢包要求比较低,但速度必须快),在线视频(RTSP 速度一定要快,保证视频连续,但是偶尔花了一个图像帧,人们还是能接受的),网络语音电话(VoIP 语音数据包一般比较小,需要高速发送,偶尔断音或串音也没有问题)等等。
一些其他应用。比如,TCP可以用于网络数据库,分布式高精度计算系统的数据传输;UDP可以用于服务系统内部之间的数据传输,因为数据可能比较多,内部系统局域网内的丢包错包率又很低,即便丢包,顶多是操作无效,这种情况下,UDP经常被使用。

CDN
二层交换机与三层交换机区别
  • Table of Contents
  • Overview
Aaron

Aaron

Keep Learning
37 posts
11 categories
GitHub E-Mail
  1. 1. UDP
    1. 1.1. UDP 的几个例子
    2. 1.2. UDP的优点
    3. 1.3. UDP的缺点
  2. 2. TCP
    1. 2.1. TCP 的三次握手
    2. 2.2. TCP 四次挥手
    3. 2.3. 累计确认
    4. 2.4. 顺序问题和丢包问题
    5. 2.5. 流量控制的问题
    6. 2.6. 拥塞控制的问题
    7. 2.7. Tcp的优点
    8. 2.8. TCP的缺点
  3. 3. TCP 和 UDP 的区别
  4. 4. TCP/UDP编程模型
  5. 5. TCP 与 UDP 的应用场景
    1. 5.1. 什么时候应该使用TCP
    2. 5.2. 什么时候应该使用UDP
  6. 6. 总结
    1. 6.1. 什么是面向连接,什么是面向无连接
    2. 6.2. TCP 为什么是可靠连接
© 2021 Aaron
Powered by Hexo v3.9.0
|
Theme – NexT.Gemini v7.3.0
|